Planar Decompositions and the Crossing Number of Graphs with an Excluded Minor

نویسندگان

  • David R. Wood
  • Jan Arne Telle
چکیده

Tree decompositions of graphs are of fundamental importance in structural and algorithmic graph theory. Planar decompositions generalise tree decompositions by allowing an arbitrary planar graph to index the decomposition. We prove that every graph that excludes a fixed graph as a minor has a planar decomposition with bounded width and a linear number of bags. The crossing number of a graph is the minimum number of crossings in a drawing of the graph in the plane. We prove that planar decompositions are intimately related to the crossing number. In particular, a graph with bounded degree has linear crossing number if and only if it has a planar decomposition with bounded width and linear order. It follows from the above result about planar decompositions that every graph with bounded degree and an excluded minor has linear crossing number. Analogous results are proved for the convex and rectilinear crossing numbers. In particular, every graph with bounded degree and bounded tree-width has linear convex crossing number, and every K3,3-minor-free graph with bounded degree has linear rectilinear crossing number. Date: April 21, 2006. Revised: April 11, 2008. 2000 Mathematics Subject Classification. 05C62 (graph representations), 05C10 (topological graph theory), 05C83 (graph minors).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting perfect matchings in graphs that exclude a single-crossing minor

A graph H is single-crossing if it can be drawn in the plane with at most one crossing. For any single-crossing graph H, we give an O(n4) time algorithm for counting perfect matchings in graphs excluding H as a minor. The runtime can be lowered to O(n1.5) when G excludes K5 or K3,3 as a minor. This is the first generalization of an algorithm for counting perfect matchings in K3,3free graphs (Li...

متن کامل

The Minor Crossing Number of Graphs with an Excluded Minor

The minor crossing number of a graph G is the minimum crossing number of a graph that contains G as a minor. It is proved that for every graph H there is a constant c, such that every graph G with no H-minor has minor crossing number at most c|V (G)|.

متن کامل

NC Algorithms for Perfect Matching and Maximum Flow in One-Crossing-Minor-Free Graphs

In 1988, Vazirani gave an NC algorithm for computing the number of perfect matchings in K3,3-minor-free graphs by building on Kasteleyn’s scheme for planar graphs, and stated that this “opens up the possibility of obtaining an NC algorithm for finding a perfect matching in K3,3-free graphs.” In this paper, we finally settle this 30-year-old open problem. Building on the recent breakthrough resu...

متن کامل

On Fan-Crossing Graphs

A fan is a set of edges with a single common endpoint. A graph is fan-crossing if it admits a drawing in the plane so that each edge is crossed by edges of a fan. It is fan-planar if, in addition, the common endpoint is on the same side of the crossed edge. A graph is adjacencycrossing if it admits a drawing so that crossing edges are adjacent. Then it excludes independent crossings which are c...

متن کامل

On the M-polynomial of planar chemical graphs

Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006